

Visualization

ALCF: Getting Started Workshop 2010

Mark Hereld & Joe Insley

Our Goals

- Introduce you to Eureka
- Examples of visualizations
- Visualization tools available to you
- Your large datasets
- Things to think about
- Practical tutorial
 - Getting started
 - Grokking ParaView
 - Visualization basics

TODAY:

Kitware is here.

ParaView, VTK, ITK, TITAN, ...

ALCF's Eureka and Gadzooks

- 100 + 4 dual quad core servers
- 200 + 8 Quadro FX5600 graphics engines
- 312 Gbytes of total frame buffer RAM
- 3.2 TB of total system RAM
- Each node (server):
 - Dual quad core CPU
 - -2 GPUs
 - 1.5 GB frame buffer RAM
 - 32 GB system RAM

All Sorts of Tools

- Visualization Applications
 - Vislt
 - ParaView
 - EnSight
- Domain Specific
 - PyMol, RasMol
- APIs
 - VTK: visualization
 - ITK: segmentat & registration
- GPU performance
 - vl3: shader-based vol ren
 - Scout: GPGPU acceleration

- Analysis Environments
 - Matlab
 - Parallel R (ORNL)
- Utilities
 - GnuPlot
 - ImageMagick
- Visualization Workflow
 - VisTrails

ParaView Overview

- Parallel Visualization Application
- Open source
- VTK + Tcl
- Python scripting
- Interactive and batch
- About
 - Kitware, Sandia National Labs,
 CSimSoft, LANL, Army Research
 ...and community
 - http://www.paraview.org

Vislt Overview

- Parallel interactive visualization application
- About
 - DOE ASCI
 - https://www.llnl.gov/visit

VisTrails

 Scientific workflow management for visual data analysis

Construct and execute pipelines

Visual programming

- VTK, ITK, and Matplotlib

History tree captures provenance

Visualization spreadsheet

- About
 - http://www.vistrails.org

In situ analysis and data reduction

- Incorporate analysis routines into the simulation code
 - operate on data while it is still in memory
- Potential for significant reduction the I/O demands
 - application scientist identifies features of interest
 - compress data of less interest

C. Wang, H. Yu, and K.-L. Ma, "Application-driven compression for visualizing large-scale time-varying volume data", IEEE Computer Graphics and Applications, accepted for publication.

http://press.mcs.anl.gov/futureslab/2009/11/19/project-stargate-sc09/

Wide Area Experiments

Nuclear Reactor Simulation

- Preliminary studies
 - 4.5 million elements
 - 7 variables per element
 - 20 K timesteps
 - Total data produced 2.5 TB
- Science runs
 - -3 4 runs with 120 million elements
 - Several runs at ½ and ¼ resolution
 - 90 K timesteps
 - ─ Total data produced 900TB 1.2 PB

Climate Modeling

- Preliminary studies
 - 50-100 with 3 million grid points (1 M atmosphere, 2 M ocean)
 - 100 variables per grid point (30 vectors, 70 scalars)
 - Simulating 5 10 years of climate
 - Total data produced 30 -124 TB
- Science runs
 - 50 runs with 6 million grid points
 - Simulating 100 years of climate
 - Total data produced 1.2 PB

Astrophysics

- Preliminary studies
 - − ~80 with 67 M grid points
 - -~5 with 536 M grid points
 - 6 variables (1 vector, 3 scalars)
 - -~1800 time steps
 - Total data produced 78 TB
- Science run*
 - 10242 x 4096 grid points
 - 6 variables (1 vector, 3 scalars)
 - ~1800 time steps
 - Total data produced 48 TB

Your Goals

- What do you look to get out of analysis process?
- What analysis tools are you currently using?
 - What are the limitations?
- Do you do real-time exploration or batch processing?
 - What is the role of real-time exploration?
- Batch?
 - Percentage of your analysis time spent in either mode?
- Do you look at images, movies or graphs?
 - What is role of each (e.g. graphs for science, images publications, movies for talks)

Your Footprint

- How long do your simulations run?
 - Is the result a time series?
 - How many files does that produce?
- How much of your simulation time is I/O?
- What are your dataset sizes?
 - checkpoint files, variables, species, analysis files
- How long do you spend on analysis, what is the fraction of compute versus human?

One cycle of the simulation		Files / Sim	Data Size
	Checkpoint Files	100	4.2 TB
	Plot Files	800	10 TB
	Particle Data	5000	500 GB

Heeeeeeere's Joe

- Practicum
 - Getting started
 - Grokking ParaView
 - Using ParaView

- Afterwards Hands-on
 - Prepare your laptop
 - Get you connected to Eureka
 - Mess around with your data (or test data)

